The ALICE Transition Radiation Detector

A. Andronic – GSI Darmstadt

- Introduction (TR)
- General characteristics
- Physics motivation
- Prototype development and tests
- Simulations of detector performance
- \bullet Status and outlook

TRDs are not "hadron-blind" ! they see all charged particles dE/dx
 TR gives a much needed boost to dE/dx of electrons

Meet ALICE TRD: the project

Participating institutions:

- GSI Darmstadt (chambers, gas system)
- IKF/U.Frankfurt (FEE, chambers)
- IKP/U.Münster (radiators)
- JINR Dubna (chambers)
- KIP/U.Heidelberg (FEE, trigger)
- NIPNE Bucharest (chambers)
- PI/U.Heidelberg (chambers, FEE, trigger)
- U.Kaiserslautern (ADC)
- FH Köln (DCS)
- FH Worms (DCS)

${\sim}60$ people

In-waiting:

- U.Tokyo
- U.Tsukuba
- U.Nagasaki

Project leader: J. Stachel, Heidelberg

Technical coordinator: J.P. Wessels, Münster

bmb+f - Förderschwerpunkt ALICE Großgeräte der physikalischen Grundlagenforschung

ALICE TRD at a glance

Purpose:

- Pion rejection factor of 100 for p>2 GeV/c
- Fast (6 μ s) trigger for high-p_t electrons and jets

Parameters:

- 540 modules $(18 \times 5 \times 6)$
- \bullet Total area: 767 m^2
- \bullet Gas volume: 27 m^3 , Xe,CO_2(15\%)
- 1.2 million readout channels (17 M pixels)
- 15 TB/s on-detector bandwidth
- Anticipated X/X₀: $\sim 14.3\%$
- Total weight: 21 tons
- Total power consumption: 75 kW

Experiment	Radiator (x,cm)	Detector (x,cm)	Area (m^2)	Ν	L (cm)	N. chan.	Method	π_{rej}
HELIOS	foils (7)	Xe-C ₄ H ₁₀ (1.8)	0.5	8	70	1744	Ν	2000
H1	foils (9.6)	Xe-He-C ₂ H ₆ (6)	1.8	3	60	1728	FADC	10
NA31	foils (21.7)	Xe-He-CH ₄ (5)	4.5	4	96	384	Q	70
ZEUS	fibres (7)	Xe-He-CH ₄ (2.2)	3	4	40	2112	FADC	100
D0	foils (6.5)	Xe-CH ₄ (2.3)	3.7	3	33	1536	FADC	50
NOMAD	foils (8.3)	Xe-CO ₂ (1.6)	8.1	9	150	1584	Q	1000
HERMES	fibres (6.4)	Xe-CH ₄ (2.54)	4.7	6	60	3072	Q	1400
kTeV	fibres (12)	Xe-CO ₂ (2.9)	4.9	8	144	$\sim 10 \text{ k}$	Q	250
PAMELA	fibres (1.5)	Xe-CO ₂ (0.4)	0.08	9	28	964	Q,N	50
\mathbf{AMS}	fibres (2)	Xe-CO ₂ (0.6)	1.5	20	55	5248	Q	1000
PHENIX	fibres (5)	Xe-CH ₄ (1.8)	50	6	4	43 k	FADC	~ 300
ATLAS	fo/fi (0.8)	Xe-CF ₄ -CO ₂ (0.4)	31	36	51-108	425 k	N,ToT	100
ALICE	fi/foam (4.8)	Xe-CO ₂ (3.7)	126	6	$\overline{52}$	1.2 mil.	FADC	200

all radiator material CH_2

▷ ALICE TRD is the biggest in **size** and **granularity**

Conditions in ALICE

Pb+Pb $\sqrt{s_{NN}} = 5.5 \text{ TeV}$

• 8 kHz interaction rate $(10^{27} \text{ s}^{-1} \text{cm}^{-2})$ • design: $dN_{ch}/dy=8000$ (central)

1% of a central Pb+Pb event \longrightarrow

- extrap. RHIC $\rightarrow dN_{ch}/dy \simeq 2-3000$ \rightarrow improved TRD perf. (trigger)
- TRD will work in conjunction with all central detectors (TRD+ITS in high-rate pp, C+C)

Dielectron measurements with TRD in ALICE

Simulations: Pb+Pb $\sqrt{s_{NN}} = 5.5 \text{ TeV}, \quad dN_{ch}/dy=8000$ <u>Cuts:</u> $45^{\circ} < \Theta < 135^{\circ} (|\eta| < 0.88); \quad 0.25 < p_t < 15 \text{ GeV/c}; \quad v_t < 3 \text{ cm}$

1 year @ 40 Hz central: \Rightarrow Signal= 0.5×10^6 , S/B=0.39-0.82

ALICE TRD Proposal, CERN/LHCC 99-13, http://www.gsi.de/~alice

\mathbf{J}/Ψ and \mathbf{QGP}

Statistical hadronization of charm quarks: A.Andronic et al., nucl-th/0303036

assumes total melting of ${\rm J}/\Psi$ in QGP

 \triangleleft does a good job at RHIC

⊲ dramatic centrality dependence at LHC

▷ Y may be even more interesting ! LHC may be the only place to measure... (requires sophisticated TRD trigger - also good for jets)

Prototype construction and tests

<u>Phase III:</u>

- Optimized real-size detectors
- Grounding scheme
- ASIC PASA and digital processor
- Custom ADC
- Final radiators
- Final detector dimensions
- Services (LV, HV, cooling)

Production Readiness Review April, 2003

Phase I:

- First-guess detectors
- Various radiator materials
- Discrete FEE

Technical Design Report October, 2001

<u>Phase II:</u>

- Final detector geometry
- Real-size chamber
- Final radiator materials
- ASIC PASA

Engineering Design Review September, 2002

ALICE TRD Prototypes

- Detectors: GSI, Heidelberg
- Radiators: Münster
- FEE: Heidelberg, Bucharest

Phase I: establishing the basics (GSI, '99-'01)

Requirements: \triangleright good TR \triangleright stiff

⊳ light

Name	Material	$ ho (g/cm^3)$	d (μ m)
foils120	PP	120 foils	20/500
foils220	PP	220 foils	25/250
fibres17	PP	0.074	17
fibres20	PP	0.05	15-20
RG30	PP	0.03	1300
RG60	PP	0.06	700
WF110	RC	0.11	700
HF110	RC	0.11	≈ 75
HF71	RC	0.07	≈ 75
IG51	RC	0.05	≈ 75
HF31	RC	0.03	≈ 75
EF700	PE	0.12	800
S-HF110	RC/PP	0.086	sandwich
S-HF71	RC/PP	0.073	sandwich

IEEE Trans. Nucl. Sc. 48, 1259 (2001)

Phase II: reference results (CERN '02)

Equipment:

- 4 small-size prototypes + real-size prototype
- PASA v.2 (quasi-final)
- Fully-functional gas system
- Improved beam diagnostics (Dubna)

Results:

- Pion rejection radiator and multi-layer performance
- Position resolution (B \leq 0.56 T)
- $\bullet~\mathrm{TR}$ spectrum

Radiator performance

- Likelihood on total charge averaged over four detectors
- Measured for 4 layers, simulated for 6 layers
- Performance not critical on radiator manufacturer choice (3 sandwiches, final design, different C-fibre coating)
- Pion rejection of 100 achieved (need improvement for deterioration in real life)
- Further improvements by exploiting the time information

Position resolution

small-size prototypes, B-field (angle=Lorentz)

- Electrons: same resolution as pions (larger S/N)
- Point and angle resolution are within specs
- Same resolutions with or without B-field
- Lorentz angles as expected (GARFIELD)
- Real-size prototype has similar resolution

- Attachment (on O_2 and SF_6): NIM A498, 143 (2003)
- dE/dx: submitted to NIM
- **Space charge**: submitted to NIM
- **TR spectrum:** to be submitted
- Drift velocities: to be submitted

More to come...

- dE/dx well reproduced by simulations
- total TR yield well reproduced (tuned regular radiator parametrization)
- the momentum dependence is not reproduced by simulations

• TRD substantially improves the momentum resolution in ALICE

$$\rightarrow \sigma \simeq 100 \text{ MeV/c}^2 \text{ for } \Upsilon$$

Phase III: fine tuning - pad planes

- Improved sandwich
 - mechanical stability (fully decoupled from readout boards) $X/X_0=0.8\%$ per layer
 - reduce capacitances (pad-pad, pad-ground)
- Adoption of tilted pad option (discussed in TDR)
- Optimize wire traces to reduce crosstalk
- Full: 1512 pieces, 30 different layouts (flexible design: C program to generate all)
- Kapton cable to FEE, soldered to chamber

1/4 of a chamber blue: pad borders, red: signal traces, vellow: readout boards

Status and outlook

Radiators:

- Production started in February 2003
- 10% ready: end of October 2003

Chambers:

- PRR: April 2003
- All parts in hand, production ready to start
- Production of 10% within 1 year (one production site, Heidelberg)
- 90 chambers (3 supermodules) ready for installation spring 2005; allows for 100% installation provided funds are secured (3 production sites: +GSI, Dubna)

FEE:

- Preamp/Shaper:
 - PRR: January 2003
 - Engineering run: July 2003
- ADC, Digital processor:
 - Final design, version 2 submitted
- MCM, Readout board:
 - Final design

Simulations:

- Global detector performance established
- Physics performance underway

Looking forward to exciting physics at LHC in 2007!