The ALICE TRD detector and physics performance

- Physics requirements
- Detector concept
- Detector construction and performance
- Some physics issues

Lepton identification in ALICE

Required performance of the ALICE TRD

The TRD should:

- provide electron identification for momenta above 1 GeV/c
- provide trigger on high-p_t electrons both in high multiplicity environment of $dN_{ch}/dy \le 8000$
- this requires:
 - * pion rejection by factor 100
 - * in bend plane: space point resolution < 400 μ m angular resolution < 1°
 - * perpendicular to bend plane: sufficient resolution for matching
 - * fast momentum determination & electron identification

TRD will improve general tracking capabilities in central barrel

Trigger requirements

trigger mainly required to get Y in min. bias PbPb collisions due to DAQ Bandwidth of 1.2 Gbyte/s

also: high $p_t J/\psi$ and jet trigger (several leading particles within cone) in particular jet – photon coincidences

- \Rightarrow need to be able to trigger on
- ★ electrons and
- ★ opposite sign electron pairs
- * with high p_t (typically above 2 GeV/c)
- time scale: 6 µs

Working Principle of the TRD

Drift chambers with cathode pad readout at 10MHz combined with a fiber/foam sandwich radiator in front

Transition Radiation (TR) photons (< 30keV, only for electrons) are absorbed by high-Z gas

the TRD (Transition Radiation Detector)

- 540 detector modules
- 750 m² active area
- Length 7 m
- Filled with 28 m³ of Xe/CO₂
- ⇒ Arranged in 18 supermodules
 6 radial layers
 5 longitudinal stacks

typical chamber size: $\approx 1.35 \text{ x } 1.03 \text{ m}^2$

 \approx 12 cm thick (incl. radiators and electronics)

in total 1.16 million read-out channels

the TRD chambers

TRD Chambers

details of drift behavior Garfield simulation C.Adler et al., NIM A540(2005)150

Karls-Universität Heidelberg

induced image charge on cathode pads of typically $0.75 \times 8 \text{ cm}^2$ (pad - ground capacitance 20 – 25 pF) pads tilted by 2° to obtain z-resolution

typical width: $\sigma \cong 0.5$ pad units $\triangleq 3.8$ mm

TRD Chambers – time structure of signal

Xe ion mobility: 0.57 10⁻⁶ cm²/V μs sampling frequency 10 Mhz (one every 100 ns)

signals of consecutive time samples due to ion tail strongly correlated

diffusion negligible: $D_1 = 250 \,\mu m/\sqrt{cm}$

tail cancellation schemes importantstandard: single exponential2 exp. costs too much S, less resolution

new: TM-TC method M. Ivanov

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

TRD Chambers

the great challenge: gain uniformity for very thin

require: gain uniformity over chamber of ± 15 % padplane should not deform more than 200 μ m

gas system operates at some overpressure (about 0.3 mbar) for vertical chambers pressure difference due to Xe hydrostatic pressure between top and bottom 0.3 mbar

compromise with desired minimal radiation lenth of detector

the Radiator

- ★ CF-laminated box-casing structure of:
- ★ Rohacell HF71 covers (8 mm each) laminated with 100 µm CF sheet
- ★ Rohacell grid structure
- filled with 7 layers of polypropylene fiber sheets (5 mm) from Freudenberg LRP375BK
- ★ total thickness 4.8 cm
- drift cathode laminated on CF:
 25 μm aluminized mylar

deflection in center: 400 μm per mbar (typ. 17 kg equ.) 114 μm per kg wire tension i.e. 400 μm for nominal tension

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Soldering of cables to cathode padplanes and testing of connectivity U. Frankfurt

connectivity and shorts are tested via capacitance measurement (dominated by cathode pad)

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Chamber construction

PI Heidelberg (development of procedure) JINR Dubna NIPNE Bucharest GSI Darmstadt IKF Frankfurt typically 1 chamber each per week on average

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

chamber tests in the lab: leak test and scan with source for gain uniformity

Fe source: too much absorption in radiator Cd source: optimal X-ray energy

Chamber testing in laboratory: Quality assurance

leak rate < 0.2 mbar 1 /hour

before glueing chambers: test reveals possible small problems such as not electrically connected anode wire

gain uniformity over chamber within desired limits of ± 15 %

R. Schicker, S. Freuen, PI Heidelberg

The TRD front-end electronics

multi-chip module (MCM)

Johanna Stachel

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Charge sensitive preamplifier/shaper

Johanna Stachel

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

ADC and Digital Chip

both functionalities in one chip: 0.18 μm UMC process

ADC:

10 bit, 10 Mhz, 12 mW/channel 18+3 channels per chip tested performance: 9.5 ENOBs

ADC: D. Muthers, K. Tielert - TU Kaiserslautern

digital part of the chip (TRAP) – functionality: tail cancellation, cross talk filter, zero suppression, gain equalization, storage of signal reconstruction of up to 4 tracklets (fit of slope and intercept) (see below)

TRAP: , V. Angelov, F. Lesser, V. Lindenstruth, R. Schneider - KIP Heidelberg

Tracklet Processing Chip (TRAP)

Track segment processing on chamber: in 4 cpu's in parallel, latency < $6 \mu s$ max 4 tracklets per 18 channels

Fitting of Track Segments

each track segment (tracklet) 15-20 space points, processors fit slope (momentum), max. detectable slope < 2 pad rows

- During Drift Time (Preprocessor):
 - charge cluster detection
 - position determination via charge sharing for each time bin (15-20)
 - assembly of fit input

* After Drift Time (CPUs):

- straight line fit of each tracklet candidate
- merging of fit parameters of adjacent channels
- fit parameter transmission

Global Tracking Unit (GTU): Architecture

- each TMU receives data from 1 Stack (via 12 links)
- Parallel processing: 90 independent "Track Matching Units" (TMUs)
 - > 1 (large) FPGA per TMU

Track Assembly in Global Tracking Unit

 Search for tracklets belonging together (3-Projdimensional matching ^{Plant}ask)

- Projection of tracklets to virtual central plane
- Sliding window algorithm
- A track is found, if ≥ 4 tracklets from different layers inside same window

Johanna Stachel

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

View of the on-chamber electronics

Noise Performance of Read-out Boards integrated on Chamber

8/2005 - first fully equipped chamber: average noise for 18 MCMs1.1 channels = 1400 electrons

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

The first stack of 6 detector modules

Test beam measurements

since 1997 at GSI SIS: pions/electrons 0.7 – 1.4 GeV/c
2001, 2002, 2004 CERN PS: pions/electrons 1 – 10 GeV/c

• measurements with small prototype chambers (20 x 35 cm²) and full size chambers (2002) and stack of 6 of these (2004) increasing amount of final electronics, software, DCS, DAQ

Test beam set-up 2004: first full-size stack plus small test chambers plus electron identification

Test beam results:

pulse height vs. time characteristics for electrons and pions

- 2 GeV/c incident momentum
 - pions
 - electrons, only dE/dx
 - electrons, dE/dx+TR

Test beam results: space charge effects on pulse height vs time characteristics for electrons and pions

at incidence perpendicular to wire: local space charge large enough to lead to screening of electric field and thereby gain reduction for electron arriving at later times - quantitatively understood by simulations 20 % effect for largest drift times and nominal gain of 4000

reduces pion rejection capability for such angles

measured gas properties

Energy loss and Lorentz angle in Xe/CO2 (15 %)

A. Andronic et al., NIM A519 (2004) 508

C.Adler et al., NIM A540 (2005) 140

space point and angular resolution

C. Adler et al., NIM A540 (2005) 140

crucial to implement in simulation fine geometry of charge deposition for X-ray: photoel. eff., fluor. photons, Auger elec.

optimized angular resolution – important for trigger

4 GeV/c pions, $\varphi = 5^{\circ}$, $\theta = 15^{\circ}$ full-size stack of chambers

best angular resolution obtained for slightly reduced pad response function

Measurement of energy per TR photon and TR energy per electron

Number of TR photons per electron vs momentum

after correction for synchroton radiation

Average Electron and Pion Energy deposit

(based on regular foil radiator)

Johanna Stachel

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Likelihood for electron and pion

A. Andronic (data of NIM A522 (2004) 40)

Likelihood can be based on

* total deposited charge (LQ)
* deposited charge/position (LQX)
* typically pick 90 % el. eff.

Pion rejection – LQ method

A. Andronic et al., NIM A522 (2004) 40 small prototype chambers

Bion efficiency INV8 Data (INV8) measured Simulations extrapolated Δ 0 p=2 GeV/c p=2 GeV/c 90% e efficiency 90% e efficiency 1 10 2 3 5 6 0 2 3 5 6 0 Layers Layers

factor 2.1 suppression per layer – well reproduced by simulation

Johanna Stachel

same data and simulation

Pion rejection vs momentum

final chambers compare well to small prototypes

performance even with only LQ method close to desired 1% at 1-3 GeV/c

factor 2.5 deterioration for momenta of 10 GeV/c due to relativistic rise

R. Bailhache, C. Lippmann, 2004 data

Different pion rejection techniques

2-dimensional likelihood (simplified) improves rejection power by 30 %

recently a neural network approach was employed based on the Stuttgart Neural Network Simulator → talk by A. Wilk finds factor 3 improvement Nucl. Instr. Meth. (2005)

Functional Tests of Tracklet Preprocessor

(M. Gutfleisch, KIP Heidelberg)

Matching (offline) of real tracklets like in GTU Test of Electron Trigger

Event display – ALICE central barrel

1/500 of acceptance in pseudorapidity

6 layers of Si
90 m³ TPC
6 layers of TRD

Combined Momentum Resolution in Central Barrel

 $dN_{ch}/dy \sim 5000$

resolution ~ 3% at 100 GeV/c

excellent performance in hard region!

Space point resolution of a track at end of TRD

beam direction

Marian Ivanov, CERN and PI Heidelberg

Physics observables accessible with the TRD

specifically for heavy ion physics and quark-gluon plasma observables:

- the new physics at LHC beyond RHIC is in the hard sector
- focus on heavy flavor and jet physics

* quarkonia
* open charm from semi-leptonic decays
* open beauty from semi-leptonic decays

* $B \rightarrow J/\psi$ * jets, γ -jet coincidences * virtual photons \rightarrow ee, Drell-Yan

screening in QCP and (enhanced) reformation at hadronization normalization charmonia, thermalization of charm quark, elliptic flow normalization for Y, thermalization of beauty, elliptic flow indendent measurement of bbar trigger (on a few leading particles) thermal radiation in mass window between $J/\psi \& Y$, very challenging

Expect prominent signals for J/ψ and in central Pb+Pb at ALICE

 $J/\psi \rightarrow ee:$ mass resolution better than 40 MeV, about 40000/month

 $Y \rightarrow ee:$ mass resolution better than 90 MeV, about 1000/month

doctoral thesis T. Mahmoud, PI Heidelberg

Charmonia in ALICE at mid-rapidity

Electron identification with TPC and TRD

Open heavy flavor measurements in (semi-)leptonic channels in ALICE

ALICE TRD Collaboration

Main Contributions:

Germany: Frankfurt University (IKF) GSI Darmstadt Heidelberg University (PI, KIP) Münster University (IKP) Russia: JINR Dubna (LHE)

Romania:

NIPNE Bukarest

Additional Subsystems:

Japan:Tokyo University, Nagasaki UniversityGreece:Athens UniversityGermany:FH Köln, Univ. Kaiserslautern, FH Worms, TU Darmstadt