The ALICE experiment at LHC

- Experimental conditions at LHC
- The ALICE detector
- Some physics observables
- Conclusions

ALICE @ LHC

Experimental conditions @LHC

- 2007 start pp commissioning
- ALICE taking data in pp, pA and AA collisions
- ALICE programme at LHC, endorsed by LHCC
 - Initial few years (1HI 'year' = 10^6 effective s)
 - reg pp run at sqrt(s) = 14 TeV $L \sim 10^{29}$ and $< 3x10^{30}$ cm⁻² s⁻¹
 - 1-2 years Pb-Pb $L \sim 10^{27} \, cm^{-2} \, s^{-1}$
 - 1 year p-Pb 'like' (p,d or α) L ~10²⁹ cm⁻² s⁻¹
 - 1 -2 years light ions (eg Ar-Ar) $L \sim 10^{27}$ to 10^{29} cm⁻² s⁻¹
- Heavy Ion running part of LHC initial programme, early pilot run expected by end of 2007 program

The ALICE experiment

ALICE acceptance

PID in ALICE

LHC new aspects I

-- probe initial partonic state in a novel Bjorken-x range (10⁻³ - 10⁻⁵)

> --> nuclear shadowing
> --> high density saturated gluon distribution (CGC)

-- Larger saturation scale $(Q_s=0.2 A^{1/6} \sqrt{s^{0.2}} = 2.7 \text{ GeV})$ particle production dominated by saturation region

LHC new aspects II

- Hard processes contribute significantly to the total AA cross section (σ^{hard}/σ^{tot} = 98 %)
 --> bulk properties dominated by hard processes
 --> very hard probes are abundantly produced
- Weakly interacting probes
 become accessible (γ, Z⁰, W⁺⁻)

ALICE physics goals

Global observables:

Degrees of freedom as function T: Early state signal collective effects: Parton energy loss in deconfined state: Study of deconfinement: Study of chiral symmetry restoration: Fluctuation signals – critical behaviour: Geometry of emitting source: Study of pp collisions in energy domain

-> Large acceptance

- -> wide momentum coverage
- -> good secondary vertex reconstr

- multiplicities, η-distributions
- hadron ratios and spectra, dileptons, direct photons
- elliptic flow
- jet quenching, high pt spectra, open charm & beauty
- quarkonia spectroscopy
- neutral to charged ratio, resonance decays
- event by event particle composition, spectra
- HBT, impact parameter by zero degree energy flow
 - -> good tracking capabilities
 - -> PID of hadrons and leptons
- -> Photon detection

ALICE Collaboration 2004: Physics Performance Report, Vol I, J. Phys. G: Nucl. Part. Phys. 30 1517 - 1763

Multiplicity AA

- Dimensional arguments: at saturation scale Q_S
- N = transverse particle density per rapidity unit

 $- N/R_A^2 = Q_S^2$, $R_A = A^{1/3}$ fm

- all particles produced by hard subprocesses
 - for central A-A collisions , at scale Q_S
 - N=A²/R_A² x 1/Q_S² = Q_S² R_A² , A²/R_A² = T_{AA} (b=0fm) →Q_S = 0.2A^{1/6} GeV

More accurate $Q_S = 0.2A^{1/6} s^b$, $b \sim 0.1$

Which multiplicity at LHC?

Former estimate: dN/dy = 2000 - 8000, extrapolation from RHIC data possible uncertainties - shadowing/saturation (decrease)

- jet quenching (increase)
- A-scaling (important soft vs. hard changes with energy)

ALICE optimized for $dN_{ch}/dy = 4000$, checked up to 8000

Parton energy loss

• Parton energy loss in medium $\langle \Delta E \rangle \propto \alpha_s C_R q L^2$

C_R Casimir coupling factor, 4/3 for quarks, 3 for gluons *q* medium transport coefficient ∝ gluon density and momenta *L* pathlength in medium

• Reduction of single inclusive high p_t particles

parton specific (stronger for gluons than quarks)

.flavour specific (stronger for light quarks)

- •Identify hadrons (π, K, p, Λ) + partons (charm, beauty) at high p_t
- Suppression of mini-jets, same-side/away-side correlations
- Change of fragmentation function for hard jets ($p_t >> 10 \text{ GeV/c}$)

Study parton energy loss

Compare p_t -distributions of leading particles in pp, pA and AA collisions

Nuclear modification factor:

$$R_{AA}(p_t) = \frac{1}{T_{AA}} \times \frac{dN_{AA}/dp_t}{dN_{pp}/dp_t}$$

Dead cone effect for heavy quarks with momenta < 20-30 GeV/c $~(v<<\!\!c)$

- gluon radiation suppressed at angles $< m_Q/E_Q$
- Dokshitzer and Kharzeev: dead cone implies lower energy loss

 \Rightarrow D meson quenching reduced

 \Rightarrow Ratio D/hadrons (D/ π^0) enhanced and sensitive to medium properties

High Pt yield of particles

Results from RHIC experiments

D. d`Enterria QM04`

Jet quenching results

Azimuthal jet correlation

- Established in:
 - p+p min. bias
 - d+Au
- suppressed in
 - Au-Au central

→ See talk by Salgado, friday

STAR at RHIC

- Quarkonia rates sensitive to nuclear absorption and secondary scattering, parton distributions, nuclear gluon shadowing
- Expect quarkonia in AA collisions reduced relative to pp or pA
- BUT copiously produced uncorrelated <u>q</u>q-pairs may form final state quarkonium -> *Is there quarkonia enhancement at LHC ?*
- Reference: total charm/beauty cross section
- Quarkonia suppression as thermometer for deconfinement transition
- Charmonium ground state J/ψ , ηc (F.Karsch QM'04):
 - Still exist at 1.5 T_c, gradually disappear for T > 1.5 T_c, are gone at 3 T_c
 - Radial excitations disappear at T_c

Deconfinement and screening

Deconfinement ~ screening of the static potential between heavy quarks

T = 0: heavy quark bound states described by confining potential $V_{qq}(r) = -4\alpha/3r + \sigma r$ $\alpha = g^2(r)/4\pi$ T > Tc: no bound state in a Debye screened potential: $V_{qq}(r,T) \sim -\alpha/r \exp(-\mu r)$ $\alpha = g^2(T)/4\pi$

Rainer Schicker, Univ. Heidelberg

g Blois workshop, 15-20 may 2005, Chateau de Blois

Heavy quark free energy - heavy quark potential (Lattice QCD)

Singlet free energy $F_1(r,T)$ *F.Karsch QM'04*

Singlet energy <=> "potential" energy

$$V_1(\mathbf{r},\mathbf{T}) = -T^2 \frac{\partial F_1(\mathbf{r},\mathbf{T})/T}{\partial T}$$

potential is "deeper": V(r,T) > F(r,T)
potential "barrier" high above Tc
"potential" screened at short distances

At what temperature do heavy quark states really disappear ?

→ See talk by Wong, friday

Rainer Schicker, Univ. Heidelberg

Blois workshop, 15-20 may 2005, Chateau de Blois

Conclusions

- LHC experiments will take data in two years
- ALICE measuring pp, pA, AA collisions
- rich and diverse physics program
- Exciting times ahead for experimentalist and theorists

The ALICE collaboration

After more than 10 years of life, still healthy and growing !

Forward Detectors

