ALICE experiment

- Physics motivation
- Experimental conditions
- Detector status
- Physics performance

Deconfinement and screening

Deconfinement ~ screening of the static potential between heavy quarks

T = 0: heavy quark bound states described by confining potential $V_{qq}(r) = -4\alpha/3r + \sigma r$ $\alpha = g^2(r)/4\pi$ T > Tc: no bound state in a Debye

> screened potential: $V_{qq}(r,T) \sim -\alpha / r \exp(-\mu r)$ $\alpha = g^2(T) / 4 \pi$

 $V_{aa}^{\Psi^{q}}(r,T) < \infty$ no confinement

Heavy quark free energy - heavy quark potential (Lattice QCD)

Singlet free energy $F_1(r,T)$ *F.Karsch QM'04*

Singlet energy <=> "potential" energy

$$V_1(\mathbf{r},\mathbf{T}) = -T^2 \frac{\partial F_1(\mathbf{r},\mathbf{T})/T}{\partial T}$$

- potential is "deeper": V(r,T) > F(r,T)

- potential "barrier" high above Tc

- "potential" screened at short distances

At what temperature do heavy quark states really disappear ?

Quarkonia

- Quarkonia rates sensitive to nuclear absorption and secondary scattering, parton distributions, nuclear gluon shadowing
- Expect quarkonia in AA collisions reduced relative to pp or pA
- BUT copiously produced uncorrelated <u>q</u>q-pairs may form final state quarkonium -> *Is there quarkonia enhancement at LHC ?*
- Reference: total charm/beauty cross section
- Charmonium ground state J/ ψ , ηc (F.Karsch QM'04):
 - Still exist at 1.5 T_c, gradually disappear for T > 1.5 T_c, are gone at 3 T_c
 - Radial excitations disappear at T_c

Parton energy loss

• Parton energy loss in medium $\langle \Delta E \rangle \propto \alpha_s C_R q L^2$

• C_R Casimir coupling factor, 4/3 for quarks, 3 for gluons

•q medium transport coefficient \propto gluon density and momenta

•*L* pathlength in medium

• Reduction of single inclusive high p_t particles

parton specific (stronger for gluons than quarks)

flavour specific (stronger for light quarks)

•Identify hadrons (π, K, p, Λ) + partons (charm, beauty) at high p_t

- Suppression of mini-jets, same-side/away-side correlations
- Change of fragmentation function for hard jets ($p_t >> 10 \text{ GeV/c}$)

Study parton energy loss

Compare p_t -distributions of leading particles in pp, pA and AA collisions

Nuclear modification factor:

$$R_{AA}(p_t) = \frac{1}{N_{coll}} \times \frac{dN_{AA}/dp_t}{dN_{pp}/dp_t}$$

Dead cone effect for heavy quarks with momenta < 20-30 GeV/c (v << c)

- gluon radiation suppressed at angles $< m_Q/E_Q$
- Dokshitzer and Kharzeev: dead cone implies lower energy loss

 \Rightarrow D meson quenching reduced

 \Rightarrow Ratio D/hadrons (D/ π^0) enhanced and sensitive to medium properties

Heavy Ions at LHC

- heavy ion experimental programs at SPS, RHIC, LHC

 $\begin{aligned} \epsilon(LHC) &> \epsilon(RHIC) > \epsilon(SPS) \\ V(LHC) &> V(RHIC) > V(SPS) \\ \tau(LHC) &> \tau(RHIC) > \tau(SPS) \end{aligned}$

Central collisions	SPS	RHIC	LHC
$s^{1/2}$ (GeV)	17	200	5500
$\mathrm{dN}_{ch}/\mathrm{dy}$	500	8 50	$2-8 \ge 10^{3}$
$arepsilon({ m GeV}/{ m fm^3})$	2.5	4-5	15 - 40
$V_f (fm^3)$	10 ³	7x10 ³	2x10 ⁴
$ au_{QGP}({ m fm/c})$	< 1	1.5 - 4.0	4-10
$ au_0({ m fm/c})$	~1	~0.5	< 0.2

LHC new aspects I

-- probe initial partonic state in a novel Bjorken-x range (10⁻³ - 10⁻⁵)

> --> nuclear shadowing
> --> high density saturated gluon distribution (CGC)

-- Larger saturation scale $(Q_s=0.2 A^{1/6} \sqrt{s^{-\delta}} = 2.7 \text{ GeV})$ particle production dominated by saturation region

LHC new aspects II

- -- Hard processes contribute significantly to the total AA cross section ($\sigma^{hard}/\sigma^{tot} = 98$ %) --> bulk properties dominated by hard processes --> very hard probes are abundantly produced
- Weakly interacting probes become accessible (γ, Z⁰, W⁺⁻)

Which multiplicity at LHC?

Former estimate: dN/dy = 2000 - 8000, extrapolation from RHIC data possible uncertainties - shadowing/saturation (decrease)

- jet quenching (increase)
- A-scaling (important soft vs. hard changes with energy)

ALICE optimized for $dN_{ch}/dy = 4000$, checked up to 8000

ALICE @ LHC

Experimental conditions @LHC

- April 2007 start pp commissioning
- Initial Heavy-Ion programme at LHC
 - Initial few years (1HI 'year' = 10^6 effective s)
 - 2-3 years Pb-Pb
 - 1 year p-Pb 'like' (p,d or α)
 - 1 year light ions (eg Ar-Ar)
 - reg pp run at s = 14 TeV

- $L \sim 10^{27} \, cm^{\text{--}2} \, \, s^{\text{--}1}$
- $L \sim 10^{29} \text{ cm}^{-2} \text{ s}^{-1}$
- $L \sim few \ 10^{27} \text{ to } 10^{29} \text{cm}^{-2} \text{ s}^{-1}$
- $L \sim 10^{29}$ and $< 3x10^{30}$ cm⁻² s⁻¹
- Heavy Ion running part of LHC initial programme, early pilot run expected by end of 2007

Luminosity limitations

LHC Intensity Limit --> Pb losses due to electromagn. processes (500 barn!)

Limit luminosity life-time:

1 exp	6.7 h	@10h	$< L >= 0.44 L_0$
2 exp	3.7 h		$< L >= 0.34 L_0$
3 exp	2.7 h		<l>=0.28L₀</l>

SPS bunch intensity limit close to nominal luminosity (limits possible schemes to improve ratio <L>/L) L_0 Max = 1.0 * 10²⁷ for Pb-Pb 0.6 * 10²⁹ for Ar-Ar 2.0 * 10²⁹ for O-O

Energy densities for different ions

ALICE physics goals

Global observables:

Degrees of freedom as function T: Early state signal collective effects: Parton energy loss in deconfined state: Study of deconfinement: Study of chiral symmetry restoration: Fluctuation signals – critical behaviour: Geometry of emitting source:

Study of pp collisions in energy domain

- -> Large acceptance
- -> wide momentum coverage
- -> good secondary vertex reconstr

- multiplicities, η -distributions
- hadron ratios and spectra, dileptons, direct photons
- elliptic flow
- jet quenching, high pt spectra, open charm & beauty
- charmonium and bottomonium spectroscopy
- neutral to charged ratio, resonance decays
- event by event particle composition, spectra
- HBT, impact parameter by zero degree energy flow
 - -> good tracking capabilities
 - -> PID of hadrons and leptons
- -> Photon detection

Variety of experimental techniques

The ALICE experiment

PID in ALICE

ALICE acceptance

 $1.6 < \eta < 3$

Inner tracking system ITS

vertex reconstruction (primary and secondary) PID via dE/dx -0.9 < η < 0.9 multiplicity and η reconstruction -2 < η < 2

Rainer Schicker, Univ. Heidelberg

FOUR SEAS CONFERENCE, 5-10 sept 2004, ISTANBUL

ITS secondary vertices

For the moment restricted inside the beam pipe R < 2.5cm Loss due to vertexing itself only 1%

$\mathbf{B} = 2 \mathbf{T}$	Position resolution	Mass resolution	Momentum resolution	Efficiency	
$rac{{f K}^0{}_s}{\Lambda}$	200-300 μm ~ 500 μm	6-8 MeV 3-4 MeV	1.5-1.8% 1.3%	21-25% 15%	

Time Projection Chamber

Rainer Schicker, Univ. Heidelberg

FOUR SEAS CONFERENCE, 5-10 sept 2004, ISTANBUL

Tracking

Rainer Schicker, Univ. Heidelberg

FOUR SEAS CONFERENCE, 5-10 sept 2004, ISTANBUL

Transition radiation detector

Full scale prototype

Rainer Schicker, Univ. Heidelberg

for e PID, p>1 GeV/c for e and high pt trigger, p>3 GeV/c -0.9 < η < 0.9

Supermodule in space frame

g FOUR SEAS CONFERENCE, 5-10 sept 2004, ISTANBUL

TRD signals: pions, electrons

Time-Of-Flight

Resistive plate chambers

PID for π, K, p π, K for p < 2 GeV/c p for p < 4 GeV/c -0.9 < η < 0.9

2 full size TOF modules under test

High Momentum Particle Identification

Photon spectrometer

Ukranian crystals

PbWO₄ crystals

Excellent energy resolution:stochastic2.7%/E^{1/2}noise2.5%/Econstant1.3%

For photons, neutral mesons and γ -jet tagging -0.5 < μ < 0.5 PHOS 256-Channel Prototype

The prototype with the CPV-detector mounted on top of it.

Rainer Schicker, Univ. Heidelberg

FOUR SEAS CONFERENCE, 5-10 sept 2004, ISTANBUL

Forward Detectors

Muon spectrometer

Muon absorber

- Front Absorber (2.5 < μ < 4, λ_{I} ~10):
 - Reducing forward flux of charged particles (100).
 - Decreasing the hadronic muon background (limit of 90 cm to IP due to the central barrel).
 - Minimizing multiple scattering.
- Beam shield $(4 < \mu < 7)$:
 - Reducing low energy background from the pipe
- Iron wall $(2.5 \le \mu \le 4, \lambda_I \approx 7.2)$:
 - Reducing low energy background in the trigger chambers which are less constrained by multiple scattering.

Muon magnet

- 820 tons
- Warm dipole (~4MW)
- B=0.7 T, $\int Bdl \sim 3 Tm$

Muon trigger system

- Fast decision (<1 μ s) for p_t cut:
 - Solution Low p_t (~1 GeV/c) for J/ Ψ , High p_t (~2 GeV/c) for Y's
- Reducing trigger rates below 1kHz:
 - PbPb @ LHC ~ 8 kHz, CaCa @ LHC ~30 kHz
- Compromise between quarkonia efficiency and background rejection:
 - Hadronic muons, soft-background, open heavy flavor decay.

CPC for stations 3,4,5

- Lengths from 80 cm to 2.4 m
- 140 CPC slats (19 types)
- Different densities $5x25 \text{ mm}^2$ to $5x100 \text{ mm}^2$.

Muon signal J/ $\Psi \rightarrow \mu^+\mu^-$

The ALICE collaboration

After more than 10 years of life, still healthy and growing !

