

Dielectron Physics with ALICE Transition Radiation Detector (TRD) **Prashant Shukla** (for the ALICE TRD Collaboration) **Institute of Physics University of Heidelberg**

Presentation at ICPA-QGP-05, 10 February 2005, Kolkata, India

- ALICE Experiment at CERN LHC
- Physics of dielectrons
- Requirements of ALICE Transition Radiation Detector (TRD)
- TRD -- Working Principle, Setup
- TRD Test Beam Results + Simulations
- Electron Pion Identification
- Momentum resolution
- Quarkonia Detection performance
- Summary

LHC at CERN

SPS 1986-2003 Pb upto 20 AGeV LHC 2007 upto 5.5 ATeV

The ALICE Experiment

- Heavy Quarkonium: J/Ψ , Y through their decays in electron pairs They will give us information about QGP formation
- Continuum: Drell Yan --> Initial Scattering in the collisions
 - Thermal --> Intn. Among thermally distributed quarks

Open charm (D), open bottom (B) mesons:

Produced in hadronization of heavy quarks

and decay semileptonically e.g.

D (q Qbar) ---> $e^+ + X$ (12 %) Dbar (qbar Q) ---> $e^- + X$ (12 %)

In conjunction with the TPC and ITS, the TRD provides sufficient electron identification capabilities to study:

- Di-electron channel: production of light and heavy vectormesons J/ Ψ , Y as well as the continuum .
- Single-electron channel: semi-leptonic decays of hadrons with open charm and open beauty channel using the displaced vertex information provided by the ITS.
- Electron Muon Coincidence: correlated DD(bar) and BB(bar) pairs via coincidences of electrons in the central barrel and muons in the forward muon arm.

- The TRD should separate electrons within a dominant background of pions
 Pion rejection factor > 100 required
- Increase the tracking capability of the ALICE Detector. Good Position (.5 mm) and Angular resolution

• **Provide trigger on high-p**_t > 2GeV/c electrons.

γ~36

pi

- Transition Radiation photons are generated by charged particles crossing the border between two different di-electric media
- Elektron-/pion-discrimination: (*p* = 5 GeV/c):

γ~10000

e⁻

TRD Working Principle

Pad area =6 cm²

sandwich PP, 17 μ m

The TRD (Transition Radiation Detector)

TRD: Radiator + Drift space + MWPC

Each chamber: 1.45 x 1.20m² 12cm thick (incl. Radiators and electronics)

The TRD (Transition Radiation Detector)

letal < 0.9 45 <Theta <135

- 18 supermodules in phi sector
- 6 Radial layers
- 5 Z longitudinal stack
- \Rightarrow 540 chambers
- \Rightarrow 750m² active area
- \Rightarrow 28m³ of gas

in total 1.18 million read out channels

TRD Stack used in CERN test beam

2002, 2004

2004

TRD Test Beam Results

Design value:

Pion suppression factor 100 at 90% electron efficiency

The dE/dx and position of Max charge (Simulated)

2500 electrons (red) and 2500 pions (blue) for 2 GeV

Use pulse height spectrum as probability distribution Construct likelihood in each plane

Liklihood Distributions (Simulated)

electrons (red) and pions (blue) (p=2 GeV) $L_Q: P_{e,\pi} = \prod_{i=1}^N P(Q_i|e,\pi)$

 Q_i - total charge in layer i

 $L_{QX}: P_{e,\pi} = \prod_{i=1}^{N} P(Q_i | e, \pi) P(t_i | e, \pi)$

 t_i - position of max. time bin

π efficiency vs electron efficiency

Test Beam

Simulated

- TRD Particle identification information in Event Summary Data (ESD):
 - Charge sum in each plane (6)
 - Time bin of maximum cluster in each plane (6)
 - Combined e Liklihood over all layers
 - Combined pi Liklihood over all layers

AliRoot Simulations

Combined Momentum Resolution

Resolution ~ 9% at 100 GeV/c excellent performance in hard region!

σ ^{dir} /nucleon pair (μb) PbPb	5.5 GeV	Calculated by NLO
	J /ψ	ψ'
σ ^{dir} /nucleon pair (μb)	11.7	2.65
Y/evt (5% Centrality)	0.31	0.07

	Y	Y'	Y"
σ ^{dir} /nucleon pair (μb)	0.15	0.094	0.057
Y/evt (5% Centrality)	0.004	0.0025	0.0015

 $L = 10^{27} \text{ cm}^{-2} \text{ s}^{-1} = 1 \text{ mb}^{-1} \text{ s}^{-1}$

Yields for open charm and beauty mesons

Pb–Pb collisions at $\sqrt{s_{NN}} = 5.5$ TeV centrality selection of 5%

N (DDbar) = 115 Ne⁻= 115*0.12=13.8, Ne⁺ = 13.8 Ne⁻e⁺ (corr) = 115*0.12*0.12= 1.66 Ne⁻e⁺ (uncorr.) = 190

N (BBbar) = 4.56

These values correspond to the average of the result obtained with MRST HO and CTEQ 5M1 parton distribution functions. EKS98 parameterization of nuclear shadowing.

- low multiplicity events, defined for Y--> e+e- within TRD acceptance
- ε (Y) = ε (e+) x ε (e-)
- conditions: 2 tracks of opposite charge, single track Pt > 2 GeV/c
 - electron channel e+ e-

- muon channel μ + μ -

Mass resolution offline J/ ψ , Y

- mass resolution offline:
- -TRD, TPC combined

Invariant Mass spectrum of dielectrons

mass resolution offline:TRD, TPC combined

- Y: $\sigma \sim 80 \text{ MeV/c2}$

m(Y)-m(Y') ~ 563 MeV/c2 --> m(Y)-m(Y') ~ 7 σ m(Y')-m(Y'') ~ 332 MeV/c2 --> m(Y')-m(Y'') ~ 4 σ

J/ ψ →ee: about 40000/month Y→ee: about 1000/month Good mass resolution and Good signal to background

Physics Data Challenge : TRD Signal events

- 10 (J/ψ, ψ')
 ---->
 e- + e+

 10 (Y, Y', Y'')
 ---->
 e- + e+

 10 (Ds and Dbars)
 ---->
 e- + e+

 10 (Bs and Bbars)
 ---->
 e- + e+
- 10 (Bs and Bbars) --> J/ψ --> e- + e+

These are the parameterizations of Ramona Vogt results Given in AliGenMUONlib

Underlying Events:

Hijingcent1 --> b (0, 5)

Hijingper1 --> b (5, 8.6)

- Good Particle Identification : Pion rejection factor 100 at 90 % electron efficiency
- Good Momentum resolution : 10 %
- Quarkonia Detection performance : Mass resolution of 1%
- We look forward to Physics Data Challenge for detailed Physics performance

Meet ALICE TRD Project

Project leader: J. Stachel, Heidelberg Technical coordinator: J.P. Wessels, Munster

Partic ip a ting institutions: GSI Darmstadt (chambers, gas system) IKF/ U.Frankfurt (FEE, chambers) IKP/ U.Munster (radiators) JINR Dubna (chambers) KIP/ U.He ide lberg (FEE, trigger) NIPNE Bucharest (chambers) PV U.He ide lberg (chambers, FEE, trigger) U.Kaiserslautem (ADC) FH Koln (DCS) FH Worms (DCS)

60 people

U.Tokyo U.Tsukuba U.Nagasaki