Testbeam data and simulations for ALICE TRD

A. Andronic – GSI Darmstadt

- Setup and main results
- Simulations procedure
- Data vs. simulations: dE/dx, TR
- Outlook

H. Appelshäuser², C. Blume¹, P. Braun-Munzinger¹, D. Bucher³, O. Busch¹, V. Cătănescu^{4,2}, M. Ciobanu^{4,1},
H. Daues¹, D. Emschermann², O. Fateev⁵, Y. Foka¹, C. Garabatos¹, T. Gunji⁶, N. Herrmann², M. Inuzuka⁶,
E. Kislov⁵, V. Lindenstruth⁷, W. Ludolphs², T. Mahmoud², V. Petracek², M. Petrovici⁴, I. Rusanov², A. Sandoval¹,
R. Santo³, R. Schicker², R.S. Simon¹, L. Smykov⁵, H.K. Soltveit², J. Stachel², H. Stelzer¹, G. Tsiledakis¹, B. Vulpescu²,
J.P. Wessels³, B. Windelband², C. Xu², O. Zaudtke³, Yu. Zanevsky⁵, V. Yurevich⁵

¹GSI Darmstadt, ²Physikaliches Institut - U. Heidelberg, ³Institut für Kernphysik - U. Münster, ⁴NIPNE Bucharest, ⁵JINR Dubna, ⁶U. Tokyo, ⁷Kirchhoff-Institut für Physik -U.Heidelberg

ALICE TRD Phase II: reference results (CERN '02)

Equipment:

- 4 small-size prototypes + real-size prototype
- PASA v.2 (ASIC, quasi-final)
- Fully-functional gas system
- Improved beam diagnostics (Dubna)

Results:

- Pion rejection radiator and multi-layer performance
- Position resolution (B \leq 0.56 T)
- $\bullet~\mathrm{TR}$ spectrum

Radiator performance

- Likelihood on total charge averaged over four detectors
- Measured for 4 layers, simulated for 6 layers
- Pion rejection of 100 achieved (need improvement for deterioration in real life)
- Performance not critical on radiator manufacturer choice (3 sandwiches, final design, different C-fibre coating)

bidimensional likelihood, \mathbf{L}_{QX}

- On average deeper layer means better pion rejection
- TR buildup vs. Bremsstrahlung ?
- Pure fibres: less pronounced dependence \rightarrow no TR responsibility ?
- Under further investigation (simulations)

Likelihood on total charge averaged over four detectors, extrapolated for 6 layers

Simulations do NOT include space charge effects

- Performance affected at normal incidence (0°) due to space charge
- Not easy to correct \rightarrow work at lowest gas gain (compromise with S/N)
- It is a very local effect (1-2° around normal)
- Normal incidence is rare in ALICE TRD

Position resolution

small-size prototypes, B-field (angle=Lorentz)

- Electrons: same resolution as pions (larger S/N)
- Point and angle resolution are within specs
- Same resolutions with or without B-field
- Lorentz angles as expected (GARFIELD)
- Real-size prototype has similar resolution

TR calculation: regular radiator

$$\frac{\mathrm{d}W}{\mathrm{d}\omega} = \frac{4\alpha}{\sigma(\kappa+1)} (1 - \exp(-N_f \sigma)) \times \sum_n \theta_n \left(\frac{1}{\rho_1 + \theta_n} - \frac{1}{\rho_2 + \theta_n}\right)^2 \left[1 - \cos(\rho_1 + \theta_n)\right]$$

where:

$$\rho_i = \omega d_1 / 2c(\gamma^{-2} + \xi_1^2), \quad \sigma = \sigma_1 + \sigma_2 \quad \text{(one foil + gap)},$$

$$\theta_n = \frac{2\pi n - (\rho_1 + \kappa \rho_2)}{1 + \kappa} > 0, \quad \kappa = d_2 / d_1$$

Approximate formula (10%, we checked it!)

includes absorption

 \rightarrow TR yield at the exit of radiator

C.W. Fabjan and W. Struczinkski, Phys. Lett. B 57, 483 (1975)

 $3.7 \text{ cm Xe, CO}_2(15\%) 15^\circ$ incidence

 δ -rays tracked above E=10 keV Range: $R(E) = AE\left(1 - \frac{B}{1+CE}\right)$

 $A{=}5.37{\cdot}10^{-4}~{\rm gcm^{-2}keV^{-1}},\ B{=}0.9815,\ C{=}3.123{\cdot}10^{-3}~{\rm keV^{-1}}$

\triangleright affect the tails of the distributions

dE/dx: means and widths

 \triangleright Tuned parametrization gives a good description of the total TR yield

More charge spectra

▷ Calculations fail to reproduce measured spectra consistently

- Calculations fail to reproduce measured momentum-dependent rejection (in the explored range of parameters, d2)
- \bullet Similar behaviour vs. d1
- Bremsstrahlung contribution ?

- Something outrageous with our data ? not really...
- Similar momentum dependences for p>3 GeV/c
- Low momentum is very sensitive to radiator configuration

- ALICE TRD required performance established in prototype tests (e/ π separation and tracking)
- dE/dx OK in simulations (a modified Fermi plateau is needed to explain electron data)
- Measured momentum dependence of TR production is not easy to get in simulations (Bremsstrahlung?)
- "more work is needed..." (irregular radiator, GEANT4)

> GEANT4 looks promising (good chance to describe data)
 > Bremsstrahlung contributes significantly ...
 P.Malzacher, K. Schwarz