The ALICE Transition Radiation Detector

A. Andronic – GSI Darmstadt

- TR(D) basics
- ALICE TRD characteristics
- Detector physics of TRD (prototype measurements)
 - -signal generation, propagation, amplification
 - $-\ldots$ and the associated problems
 - performance
- FEE, DCS, gas system, cooling
- On-going activities

http://www-alice.gsi.de/trd

What is transition radiation?

"Transition radiation is *omitted* whenever a charged particle crosses an interface between two media with different dielectric functions." — L. Durand, Phys. Rev. D 11, 89 (1975)

TRDs are not "hadron-blind", they see all charged particles dE/dx
TR gives a much needed boost to dE/dx of electrons

A. Andronic – ALICE TRD

Goal: pion rejection factor of 100, fast trigger for high- p_t electrons and jets

Parameters:

- 540 modules $(18 \times 5 \times 6)$
- Total area: 767 m^2
- \bullet Gas volume: 27 m^3 , Xe, CO_2(15\%)
- \bullet 1.2 mil. readout chan. ($\simeq 20$ M pixels)
- 15 TB/s on-detector bandwidth
- Rad. thickness X/X₀: $\sim 22\%$
- Total weight: 21 tons
- \bullet Total power consumption: 70 kW
- 60 persons, 10 institutions

Conditions in ALICE

Pb+Pb $\sqrt{s_{NN}} = 5.5 \text{ TeV}$

- 8 kHz interaction rate $(10^{27} \text{ s}^{-1} \text{cm}^{-2})$
- $dN_{ch}/dy=8000$ (central collisions) 1% of a central Pb+Pb event at LHC

(recent extrapolations: $dN_{ch}/dy \simeq 2000$) need high granularity

 the TRD will work in conjunction with all central detectors
(TRD+ITS in high-rate pp, C+C)

A comparison of TRDs

Experiment	Radiator (x,cm)	Detector (x,cm)	Area (m^2)	N	L (cm)	N. chan.	Method	π_{rej}
HELIOS	foils (7)	Xe- C_4H_{10} (1.8)	0.5	8	70	1744	Ν	2000
H1	foils (9.6)	Xe-He-C ₂ H ₆ (6)	1.8	3	60	1728	FADC	10
NA31	foils (21.7)	Xe-He-CH ₄ (5)	4.5	4	96	384	Q	70
ZEUS	fibres (7)	Xe-He-CH ₄ (2.2)	3	4	40	2112	FADC	100
D0	foils (6.5)	Xe-CH ₄ (2.3)	3.7	3	33	1536	FADC	50
NOMAD	foils (8.3)	Xe-CO ₂ (1.6)	8.1	9	150	1584	Q	1000
HERMES	fibres (6.4)	Xe-CH ₄ (2.54)	4.7	6	60	3072	Q	1400
kTeV	fibres (12)	Xe-CO ₂ (2.9)	4.9	8	144	$\sim 10 \text{ k}$	Q	250
PAMELA	fibres (1.5)	Xe-CO ₂ (0.4)	0.08	9	28	964	Q,N	50
\mathbf{AMS}	fibres (2)	Xe-CO ₂ (0.6)	1.5	20	55	5248	Q	1000
PHENIX	fibres (5)	Xe-CH ₄ (1.8)	50	6	4	43 k	FADC	~ 300
ATLAS	fo/fi (0.8)	Xe-CO ₂ -O ₂ (0.4)	31	36	51-108	425 k	N,ToT	100
ALICE	fi/foam (4.8)	Xe-CO ₂ (3.7)	126	6	52	1.2 mil.	FADC	200

all radiator material CH_2

ALICE TRD – The principle

wires: Au-W 20 μ m, Cu-Be 75 μ m; pads: $\simeq 7 \times 80 \text{ mm}^2$

A. Andronic – ALICE TRD

ADC: 10 bit, 10 MHz sampling, 2 V dynamic range; Noise: $\simeq 1.3$ LSB

Prototype tests

- beams: e,π 1-10 GeV/c
- GSI, CERN 1998-2004

One track, p=4 GeV/c

NIM A519(2004)508 [physics/0310122]

- Landau distribution
- Basic quantity for particle id.
- \bullet ... and for tracking (S/N)
- Needs to be well understood (simulations; GEANT3)
- Details (δ -rays) matter

dE/dx: momentum dependence

NIM A519(2004)508 [physics/0310122]

Almost, but not all...

Example: width of dE/dx spectrum

- determines PID quality
- is determined by $\langle N_{prim} \rangle$...too small in GEANT3

Drift velocities

NIM A523 (2004) 302 [physics/0402044]

Gas gain (amplification)

NIM A523 (2004) 302 [physics/0402044]

- measured using 55 Fe: 5.96 keV / $W \simeq 260$ electrons measure rate (Bq) and current on the anode (nA)
- measurements (symbols) and calculations (Imonte, lines) agree well
- ...only if Penning effect taken into account

$$\mathrm{CO}_2^* + \mathrm{Xe} \to \mathrm{CO}_2 + \mathrm{Xe}^+ + \mathrm{e}^-$$

- ... around the anode wires
 - reduction of late signal due to reduced effective gas gain (screening from earlier avalanches, slow moving ions) - quantitatively understood
 - pronounced at normal incidence (0 deg.), a local effect (~100 μ m)
 - larger for higher gains
 - leads to a slight degradation of e/π identification perf.

NIM A525 (2004) 447 [physics/0402043]

NIM A498 (2003) 143 [physics/0303059]

- three-body resonant capture: $I + e^- \rightarrow I^{-*}$ $I^{-*} + S \rightarrow I^- + S^*$ $I = O_2, H_2O; S = quencher$
- attachment on O₂ is moderate, can be serious for long drifts (TPCs)
- conditions in drift chambers: $O_2 \sim 10 \text{ ppm}, \text{H}_2\text{O} \sim 100 \text{ ppm}$

NIM A498 (2003) 143 [physics/0303059]

- huge! ...but can be quantitatively understood
- strong dependence on E (electron characteristic energy)
- enhanced by CO_2 presence present, but reduced, with CH_4
- why SF_6 ? present (0.9 ppm) in the Xe bottle (we found it by chance - during beam tests...)

Electron attachment: early diagnosis

Electron/pion identification

- Likelihood on total charge, including TR (well described by simulations)
- Pion rejection of 100 achieved, further improvements possible

Position resolution: detector geometry

- Expected improving of resolution with signal-to-noise ratio
- Electrons: worse than pions (due to TR, angular dep. of absorption)
- Good agreement with simulations
- Same resolutions with or without B-field

due to remanent signal asymmetry; point resolution: 130 μ m

Lorentz angles

Transition radiation spectrum

nicely reproduced by simulations (important for physics perf. simulations)

A.Andronic – ALICE TRD

Front-end electronics

Detector control system

- on-detector: network of custom computers (Linux) and interfaces (internet)
- clock distribution to MCMs, possibility of (slow) detector data readout
- off-det.: setting and monitoring voltages, monitoring currents, temperature

Gas system

- cooking the right mixture, circulate it, filter O_2 and H_2O
- \bullet regulates on-detector pressure (\simeq 0.5 mbar) compensates hydrostatics
- monitoring gas quality and environment (pressure) via drift velocity meas.

Cooling system

• water-based, transporting away the power (70 kW) dissipated on-detector

Chamber construction

Ongoing, 60% accomplished

Bucharest, Darmstadt, Dubna, Frankfurt, Heidelberg (radiators: Münster)

(radiator laminate panels, backpanels: Fischer AG)

The supermodule (30 chambers)

1st one finished in Heidelberg (all others: Münster)

1/18 of ALICE TRD (or $\simeq 0.5$ mil. euros)

... just ready in Heidelberg, awaiting shipping to CERN

1/18 of ALICE TRD (or $\simeq 0.5$ mil. euros)

...being tested with cosmic rays at CERN

1/18 of ALICE TRD (or $\simeq 0.5$ mil. euros)

...in its final position

Construction

- FEE: companies (chips, MCMs, readout boards), testing in Heidelberg
- \bullet chambers: built in 5 inst. (60% done), equip. with FEE and tests: Frankfurt
- \bullet supermodules (17/18 to go): Münster (another 2 to be ready end of April)
- DCS: Heidelberg, Worms; cooling: GSI, Heidelberg, Münster; HV: Athens

Preparing for data (with simulations)

- calibration (gas gain, drift vel., time ref., PRF) and alignment (GSI)
- position reconstruction and tracking (GSI, Heidelberg)
- e/π identification (new methods, bidimensional distributions: GSI)

...and of course physics performance studies

ALICE TRD-Kollaboration — C. $ADLER^6$, S. $ALTINPINAR^4$, C. ANDREI², H. ANDREI², A. ANDRONIC⁴, V. ANGELOV⁷, A. ANJAM⁶, H. APPELSHÄUSER⁵, G. AUGUSTINSKI⁴, S. BABLOK¹¹, R. BAILHACHE⁴, B. BATHEN⁹, C. BAUMANN⁹, I. BERCEANU², A. BERCUCI⁴, C. BLUME⁵, P. BRAUN-MUNZINGER⁴, H. BÜSCHING⁵, O. BUSCH⁴, V. CATANESCU², V. CHEPURNOV³, S. CHERNENKO³, P. CHRISTAKOGLOU¹, E.S. CONNER¹¹, J. DE CUVELAND⁷, M. DE GASPARI⁶, T. DIETEL⁹, B. DOENIGUS⁴, L. EFIMOV³, R. EITEL⁶, D. EMSCHERMANN⁶, O. FATEEV³, A. FICK⁵, C. GARABATOS⁴, P. GLÄSSEL⁶, R. GLASOW⁹, H. GOTTSCHLAG⁹, H. GRIMM⁹, J.F. GROSSE-OETRINGHAUS⁹, T. GUNJI¹⁰. H. HAMAGAKI¹⁰, M. HARTIG⁵, G. HARTUNG⁸, J. HEHNER⁴, N. HEINE⁹, T. HEROLD⁶, N. HERRMANN⁶, R. KEIDEL¹¹, M. KESSENBROCK⁵, S. KIRSCH⁷, M. KLIEMANT⁵, S. KNIEGE⁵, E. KOFLER¹¹, F. KRAMER⁵, T. KRAWUTSCHKE⁸, M.J. KWEON⁶, V. LINDENSTRUTH⁷, C. LIPPMANN⁴, A. MARIN⁴, P. MALZACHER⁴, S. MASCIOCCHI⁴, J. MERCADO⁶, D. MISKOWIEC⁴, Y. MORINO¹⁰, K. OYAMA⁶, Y. PANEBRATSEV³, A. PETRIDIS¹, M. PETRIS², M. PETROVICI², M. PLOSKON⁵, S. RADOMSKI⁶,

C. REICHLING⁷, R. RENFORDT⁵, F. RETTIG⁷, K. REYGERS⁹, S. SAITO¹⁰, R. SANTO⁹, C. SCHIAUA², R. SCHICKER⁶, C.J. SCHMIDT⁴, R. SCHNEIDER⁷, B. SCHOCKERT¹¹, M. SCHUH⁷, S. SCHWAB⁴, K. Schwarz⁴, K. Schweda⁶, V. Simion², H.K. Soltveit⁶, W. Sommer⁵, R. SOUALAH⁶, J. STACHEL⁶, J. STECKERT⁷, A. STEFFEN⁴, G. TSILEDAKIS⁶, M. TSILIS¹, M. VASSILIOU¹, W. VERHOEVEN⁹, R. WAGNER⁶, Y. WANG⁶, J.P. WESSELS⁹, U. WESTERHOFF⁹, A. WILK⁹, B. WINDELBAND⁶, V. YUREVICH³, Y. ZANEVSKY³ und K. ZAPP⁶ -¹University of Athens, Greece -²NIPNE Bucharest, Romania — ³JINR Dubna, Russia — ⁴Gesellschaft für Schwerionenforschung, Darmstadt, Germany — ⁵Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Germany — ⁶Physikalisches Institut, Universität Heidelberg, Germany — ⁷Kirchhoff-Institut für Physik, Universität Heidelberg, Germany — ⁸Fachhochschule Köln, Germany — ⁹Institut für Kernphysik, Universität Münster, Germany — ¹⁰University of Tokio, Japan — ¹¹Fachhochschule Worms, Germany

(as of December 2006)

Project leader: J. Stachel (U.Heidelberg); <u>Technical coordinator</u>: J.P. Wessels (U. Münster)