ALICE TRD trigger algorithms and performance for Upsilon detection

(electron trigger in Pb-Pb @ LHC $\sqrt{s} = 5.5$ TeV)

On-line tracking is high pt tracking

Electron efficiency

Upsilon efficiency

Trigger on signal and background

Electron separation with the Transition Radiation Detector

Rates?

ALICE TRD

TPC: largest data volume to the DAQ - tracking in 82 µs !

TRD: drift + MWPC + radiator R > 300 cm $|\eta| < 0.9$ $\Delta \phi = 360 \text{ deg}$

18 φ-sectors x
5 Z-modules x
6 R-layers =
540 chambers.

One TRD super module = 5 modules

Trigger: 6 x 3 cm gas chambers = 2 μ s drift + (on-line tracking and PID) = 6.1 μ s !!!

Read-out structure

Local Tracking Unit (single chamber tracking: tracklets)

Global Tracking Unit (module tracks)

LTU: σ (Y) = 400 μ m, σ (α) = 0.56 deg, σ (Z) = 6 cm

GTU tracking with sliding-window matching

Processor (FPGA) algorithms perform comparable with pure combinatorics!

Input data sorting, parallel channels matching and results uniquifier.

Tracklets pure combinatorics and cuts

Searching for quarkonia signal in the di-electron channel (the effect of BREMS by comparison with the di-muon channel) LTU and GTU pt > 2.3 GeV/c

Tracking efficiency for primary particles

Single particle efficiency

HERA and the LHC, Workshop, CERN 26-27 March, 2004

Bogdan VULPESCU, University of Heidelberg, Germany

Upsilon tracking efficiency in the di-electron channel

(in low multiplicity events)

Defined for the $Y \rightarrow e^+ e^-$ within the TRD acceptance.

 $\boldsymbol{\epsilon}(\boldsymbol{\Upsilon}) = \boldsymbol{\epsilon}(\boldsymbol{e}^{+}) \cdot \boldsymbol{\epsilon}(\boldsymbol{e}^{-})$

For comparison: di-muon channel

Efficiency and momentum resolution at large particle multiplicity

 $M = (dN_{ch}/dy)|y=0$

Simulations (HIJING) for: M = 1%, 2%, 3%, 5%, 10%, 25%, 50%, 75% and 100% of M = 8000plus signal

HERA and the LHC, Workshop, CERN 26-27 March, 2004

Primary trigger background

Pion rejection performance bulk value dependence on the event multiplicity

Depends on tracklets quality and number of reconstructed segments (TRD layers), etc.

(simulation extrapolation from beam data at 2 GeV/c)

Methods:

- likelihood on integrated charge
- likelihood on integrated charge and position
- neural networks

Delicate subject of simulations...

Comparable with he improved PID in the TPC by dE/dx (but faster...).

Conclusions

At the level of the TRD TDR (Sept. 2001) there was most of the trigger functionality already implemented.

Progress of:

- signal electronics

- integrated clusterizer and tracking processor (LTU)

Changes in:

- detector geometry

- material budget

Prototypes of:

- Global Tracking Unit

The goals:

- define trigger rates and regions of interest to the High Level Trigger (TPC fast tracking)

- combine trigger with fast simulations of off-line tracking and look for S/N...

