EMMI RRTF @ GSI Dec. 12th, 2016

Updates from CUJET3

Indiana University, Physics Dept. & CEEM

Jinfeng Liao

Research Supported by NSF & DOE

Outline

- Jet (geometric) tomography, and how I came into this
- CUJET3: What It Is & What It Does
- HF Tests from CUJET3
- Summary & Discussions

References:

Shi, Xu, JL, Gyulassy, in preparation; Xu, JL, Gyulassy, arXiv:1411.3673[CPL2015]; arXiv:1508.00552[JHEP2016].

Li, JL, Huang, PRD89,126006(2014). X. Zhang, JL, PRC2013; PRC2014; PLB2012; arXiv:1311.5463. JL, arXiv:1109.0271[PANIC11 proceedings]. JL, Shuryak, Phys.Rev.Lett. 102 (2009) 202302.

Geometric Anisotropy of Jet Quenching

Geometric tomography(~2000) [Gyulassy,Vitev,Wang, arXiv:nucl-th/0012092

Positive v2 for high Pt hadrons — beautiful idea! It could be a "crowning" confirmation of jet energy loss model.

Maybe Sometimes We Got Too Ambitious...

Till ~2008: clear and significant discrepancy between data / any model. That was the situation when I dived into this water...

Magnetic Component of sQGP

Magnetic Component of Strongly Coupled Quark-Gluon Plasma

A Dissertation Presented

by

Jinfeng Liao

to

The Graduate School

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Physics

Stony Brook University

August 2008

There is the strongly coupled QGP, in the 1~2Tc regime.

What is the making of sQGP?

What is the connection to the vacuum confinement?

How the knowledge about sQGP helps us understand confinement?

"Magnetic Component"

sQGP: The Matter Just About to Be Confining

The new paradigm thanks to discoveries at RHIC and LHC (1~3Tc):

A few of us, quickly came to realize: The matter just above confinement (in 1~2Tc), is more like the confined world, rather than like the far-far-away place of asymptotic QGP!

> This is to say, the confinement physics (whatever it is), must continue robustly into this region — we call it "<u>postconfinement</u>" regime!

The Special Near-Tc Matter: What are the DoF?

Shuryak, Liao,...: this is a monopole plasma!

The two pictures are in complement, from Electric or Magnetic language respectively, and reconciled into one coherent message: Postconfinement Regime in 1~2Tc, with lively new manifestation of confinement physics

Magnetic Scenario of Near-Tc Plasma

Condensate monopoles —> dense thermal monopoles 1-2Tc: thermal monopoles hold together electric flux, yet with dissipation.

PHYSICAL REVIEW C 75, 054907 (2007)

Strongly coupled plasma with electric and magnetic charges

Jinfeng Liao and Edward Shuryak

WHAT A MAGNETIC COMPONENT DOES?

We first studied the plasma of a completely new kind: Coulomb-Lorentz Plasma!

Molecular Dynamics for 1000 particles with long range forces for varying E/M ratio:

pure electric; 25% magnetic charges; 50% magnetic charges

"Lorentz-Trapping Effect"

What about the jets? Can they sense the M charges? We spent a busy summer of 2008 on this problem...

From "Transparency" to Opaqueness

The temperature dependence of jet-medium coupling has profound consequences!

Where Are Jets Quenched (More Strongly)?

Taken for granted in all previous models: "waterfall" scenario.

We realized the puzzle may concern more radical questions:

Where are jets quenched (more strongly)?

Geometry is a sensitive feature:

"Egg yolk" has one geometry, "Egg white" has another.

Where are jets quenched in heavy-ion collisions?

Jinfeng Liao^{1,2*} and Edward Shuryak^{1†}

¹Department of Physics and Astronomy, State University of New York, Stony Brook, NY 11794 ²Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (Dated: October 22, 2008)

We study dependence of jet quenching on matter density, using "tomography" of the fireball provided by RHIC data on jet azimuthal asymmetry parameter $v_2(b)$ for large p_t hadrons. Slicing the fireball into shells with constant (entropy) density, we derive a new geometrical limit for it which indeed is above the data $v_2(b) < v_2^{max}(b)$. Interestingly, the limit is reached only if quenching is dominated by a shell with the entropy density $3 fm^{-3} < s < 11 fm^{-3}$, exactly the near- T_c region. We conclude that the data can be explained if quenching is few times stronger in the near- T_c region than in the QGP at $T > T_c$. We also argue that recent views picturing the near- T_c region as a magnetic plasma of monopoles can naturally explain that.

Near-Tc Enhancement (NTcE)

than the higher-T QGP phase."

Hot QCD Matter from RHIC to LHC

RHIC Events

LHC Events

From RHIC to LHC: Capability of shifting QGP Temperature!

The Surprising Transparency of the sQGP at LHC

W. A. Horowitz^{*} Department of Physics, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa

Miklos Gyulassy Department of Physics, Columbia University, 538 West 120th Street, New York, NY 10027, USA (Dated: April 27, 2011)

Jet Tomo vs Mono vs Holo -graphy

The Opaqueness Does Shift!

Already a clear hint of LESS OPACITY:

similar R_aa, despite twice the density!

Beautiful jet quenching measurements from all collaborations

Quantifying the Reduction of Opaqueness

Examining a reduced jet-medium coupling in Pb+Pb collisions at the Large Hadron Collider

Barbara Betz^a and Miklos Gyulassy^b

^aInstitute for Theoretical Physics, Johann Wolfgang Goethe-University, 60438 Frankfurt am Main, Germany ^bDepartment of Physics, Columbia University, New York, 10027, USA

Effective Coupling κ assuming $\tau_0 = 0.01 \text{ fm/c}$			
\sqrt{s}	Glauber	dcgc1.2	Glauber
	z=1	z=1	z=2
0.20	0.60	0.58	0.44
2.76	0.45	0.43	0.26
LHC/RHIC	0.75	0.74	0.59

Analysis by me and student came to the same conclusion. Zhang & JL, arXiv: 1208.6361,1210.1245.

 $<\kappa>_{
m RHIC}:<\kappa>_{
m LHC}pprox 1:0.72$

Let me emphasize: this reduction is naturally born out from near-Tc enhancement !

V2 from RHIC to LHC

RED: L^2 model+waterfallBLUE: L^2+volcanoBLACK: L^3+waterfall

*We do see big difference between waterfall/volcano at RHIC, and this difference becomes much smaller at LHC * RHIC + LHC data are in favor of the L^2 + Volcano scenario

Zhang & JL, arXiv: 1208.6361

Detailed Analysis from Earlier CUJET

Results from Renk's Simulations

Extractions at RHIC vs LHC

In the paper PRL(2009) we (Liao&Shuryak) concluded: "In relativistic heavy ion collisions the jets are quenched about 2--5 times stronger in the near-Tc region than the higher-T QGP phase."

Message from One More Dimension

Deforming the conformal-AdS to introduce non-conformal dynamics: using graviton-dilaton system in the bulk

$$S_G = \frac{1}{16\pi G_5} \int d^5 x \sqrt{g_s} e^{-2\Phi} \left(R_s + 4\partial_M \Phi \partial^M \Phi - V_G^s(\Phi) \right)$$
$$\Phi(z) = \mu_G^2 z^2 \tanh(\mu_{G^2}^4 z^2 / \mu_G^2)$$
$$ds_S^2 = e^{2A_s} \left(-f(z)dt^2 + \frac{dz^2}{f(z)} + dx^i dx^i \right)$$

We use the Liu-Rajagopal-Wiedemann scheme to compute q-hat

$$\hat{q} = \frac{\sqrt{2}\sqrt{\lambda}}{\pi \int_0^{z_h} dz \sqrt{g_{zz}/(g_{22}^2 g_{--})}},$$

D. Li, JL, M. Huang, arXiv:1401.2035

Results from Non-Conformal Holo-QCD

Same non-conformal, non-monotonic, non-perturbative dynamics ---> shows up in trace anomaly and in jet transport parameter

Rougemont, Ficnar, Finazzo, Noronha, arXiv:1507.06556

Quite different holo setup, but showing the same robust connection as above!

NEAR-TC MATTER IS SPECIAL

Will we see a systematic deviation from RHIC to LHC? Yes! The "see-saw"-QGP expects such a picture to occur in a narrow regime 1-3Tc. A kind of "critical opalescence"! Reminiscence of a phase transition underlying the crossover

The QGP Liquidity is Shifting Too!

Works of multiple groups (BNL-McGill, Frankfurt, Scalay, OSU) consistently suggest a visible increase, ~40%, of average eta/s from RHIC to LHC.

To be in context: the temperature is increased only by \sim 30% from RHIC to LHC.

Such rapid change is an indication of near-Tc phenomenon.

Toward Microscopic Making of sQGP!

There are a number of outstanding challenges in understanding how the QGP does what it does:

- *We know that there are nonperturbative dynamics and emergent
- degrees of freedom in sQGP how to implement such physics?
- * Experimental & lattice data validation/constraints?
- * Perfect fluidity v.s. Jet quenching how to reconcile the two key properties of the sQGP?

Xu, JL, Gyulassy, arXiv:1411.3673; arXiv:1508.00552

CUJET3: Semi-Quark-Gluon Monopole Plasma

CHIN. PHYS. LETT. Vol. 32, No. 9 (2015) 092501

Express Letter

Consistency of Perfect Fluidity and Jet Quenching in Semi-Quark-Gluon Monopole Plasmas *

Jiechen Xu(徐杰诺)¹, Jinfeng Liao(憲法時)^{2,3**}, Miklos Cyulassy^{1**}

¹Department of Physics, Columbia University, New York 10027, USA ²Physics Department and CEEM, Indiana University, Bloomington 47408, USA ³RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, New York 11973, USA

(Received 31 July 2015)

We utilize a new framework, CUJET3.0, to deduce the energy and temperature dependence of the jet transport parameter, \hat{q} (E > 10 GeV, T), from a combined analysis of available data on nuclear modification factor and azimuthal asymmetries from high energy nuclear collisions at RHIC/BNL and LHC/CERN. Extending a previous perturbative-QCD based jet energy loss model (known as CUJET2.0) with (2+1)D viscous hydrodynamic bulk evolution, this new framework includes three novel features of nonperturbative physics origin: (i) the Polyakov loop suppression of color-electric scattering (aka 'semi-QGP' of Pisarki et al.), (ii) the enhancement of jet scattering due to emergent magnetic monopoles near T_c (aka 'magnetic scenario' of Liao and Shuryak), and (iii) thermodynamic properties constrained by lattice QCD data. CUJET3.0 reduces to v2.0 at high temperatures T >400 MeV, while greatly enhances \hat{q} near the QCD deconfinement transition temperature range this enhancement accounts well for the observed elliptic harmonics of jets with $p_i >10$ GeV. Extrapolating our data-constrained \hat{q} down to thermal energy scales, E \sim 2GeV, we find for the first time a remarkable consistency between high energy jet quenching and bulk perfect fluidity with $\eta/s \sim T^3/\hat{q} \sim 0.1$ near T_c.

PACS: 25.75.-q, 12.38.Mh, 24.85.+p, 13.87.-a DOI: 10.1088/0256-307X/32/9/092501

Bridging soft-hard transport properties of quark-gluon plasmas with CUJET3.0

Jiechen Xu,^a Jinfeng Liao^{b,c} and Miklos Gyulassy^a

^aDepartment of Physics, Columbia University, 538 West 120th Street, New York, NY 10027, U.S.A.

^b Physics Department and Center for Exploration of Energy and Matter, Indiana University, 2401 North Milo B, Sampson Lane, Bloomington, IN 47408, U.S.A.

^eRIKEN BNL Research Center, Brookhaven National Laboratory,

Building 510A, Upton, NY 11973, U.S.A.

E-mail: xjc@phys.columbia.edu, liaoji@indiana.edu, gyulassy@phys.columbia.edu

A Sophisticated Simulation Framework

DGLV-CUJET framework for describing multi-parton scattering:

$$\begin{aligned} x_E \frac{dN_g^{n=1}}{dx_E} &= \frac{18C_R}{\pi^2} \frac{4 + N_f}{16 + 9N_f} \int d\tau \ n(\mathbf{z}) \Gamma(\mathbf{z}) \ \int d^2k \\ &\times \alpha_s \left(\frac{\mathbf{k}^2}{x_+(1-x_+)}\right) \ \int d^2q \frac{\alpha_s^2(\mathbf{q}^2)}{\mu^2(\mathbf{z})} \frac{f_E^2 \mu^2(\mathbf{z})}{\mathbf{q}^2(\mathbf{q}^2 + f_E^2 \mu^2(\mathbf{z}))} \\ &\times \frac{-2(\mathbf{k} - \mathbf{q})}{(\mathbf{k} - \mathbf{q})^2 + \chi^2(\mathbf{z})} \left[\frac{\mathbf{k}}{\mathbf{k}^2 + \chi^2(\mathbf{z})} - \frac{(\mathbf{k} - \mathbf{q})}{(\mathbf{k} - \mathbf{q})^2 + \chi^2(\mathbf{z})}\right] \\ &\times \left[1 - \cos\left(\frac{(\mathbf{k} - \mathbf{q})^2 + \chi^2(\mathbf{z})}{2x_+E}\tau\right)\right] \left(\frac{x_E}{x_+}\right) \left|\frac{dx_+}{dx_E}\right| \ . \end{aligned}$$

Original DGLV formalism has only quark/gluon scattering centers

We now include both color-electric and color-magnetic scattering centers.

Our goal is to implement the nonperturbative NEAR-Tc Physics ---> CUJET3.0

27

The Making of sQGP

are well constrained by available lattice data.

CUJET3.0 Explains (RHIC+LHC)*(Raa+V2)!

The SEVEN set of single hadron observables

[(RHIC+LHC) * (RAA+V2) * (pion)] + [(LHC) * (RAA+V2) * (D)] + [(LHC) * (RAA) * (B)],

are nicely explained by CUJET3.0 framework (with essentially ONE model parameter) that implements the nonperturbative near-Tc physics!

Near-Tc Matter Properties are Special!

CONSISTENCY of Perfect Fluidity & Jet Quenching in the semi-quark-gluon monopole plasma (sQGMP)!

30

HF Test from CUJET3 for RRTF

- Only collisional/elastic energy loss included.
 (no radiational/inelastic e.l.)
- dE/dx = A(p²) p , [M.Mustafa et al PRC57(1998)]
 A(p²) obtained from file "FPcoeff-pQCD-K5.dat"
- Both input charm quark pp spectrum & fragmentation function are using "RRTF standard".
- 2+1D VISHNU hydro profile employed.
- For comparison, results using CUJET collisional energy loss kernel also attached.

$$\frac{dE}{dx} = -C_R \pi \alpha_s^2 T^2 \left(1 + \frac{2}{6} \right) \left(\frac{1}{v} + \frac{v^2 - 1}{2v^2} \log \frac{1 + v}{1 - v} \right) \log \left(\frac{k_{max}}{\mu} \right)$$

HF Test from CUJET3 for RRTF

 $R_{AA} \& v_2$ for charm quark

- Blue: 0-10%
- Red: 30-50%

HF Test from CUJET3 for RRTF $R_{AA} \& v_2$ for D0

- Blue: 0-10%
- Red: 30-50%

HF Test from CUJET3 for RRTF

R_{AA} & v₂ for D0 — CUJET c.e.l. kernel

for comparison

- Blue: 0-10%
 Solid: RRTF standard
- Red: 30-50%
 Dashing: CUJET with α_s = 0.4, N_f = 3, m_c = 1.5 GeV

HF Test from CUJET3 for RRTF

HF Test from CUJET3 for RRTF about hydro — Spectrum & v2 BEFORE hadron cascade (at the end of QGP evolution)

- Blue: 0-10%
- Red: 30-50%

- Solid: pions
- · Dashed: protons

HF Test from CUJET3 for RRTF

about hydro — Spectrum & v2 AFTER hadron cascade

- Blue: 0-10%
- Red: 30-50%

- Solid: pions
- · Dashed: protons

Summary & Discussions

