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|. Heavy flavor production
mechanisms
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Fixed flavor number scheme
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ZMVFS open heavy flavor at NLO
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Kneesch et al . (2008) Kniehl et al . (2008)

When p; > m, m, Consistent with factorization, non-perturbative physics is long distance



Implications for heavy flavor

modification

A very large contribution of gluon FF to heavy flavor
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The important implication of this will affect the nuclear modification factor

F. Ringer et al . (2016)



The same is true, of course, for b
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* The reason for which b-jets are as suppressed as light jets at high p-

J. Huang et al . (2013) Y.T. Chien et al . (2015)



ll. Uncertainties related to the

in-medium modification
application "




The big picture (you have seen it

before)
= QCD inthe medium remains Ovanesyan et al. (2011)
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The splitting kernels

= Splitting functions are
related to beam (B) and jet (J)
functions in SCET
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= |nthe vacuum we have the DGLAP splitting
| kernels that factorize from the hard scattering
Y. Dokshitzer (1977) cross section and are process independent

G. Altarelli et al. (2977)



Heavy quarks in the medium
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The energy loss limit

3 splitting functions (g to gg is the same)
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A bit of an ambiguity in the diagonal splitting of how to treat x suppressed
terms in the numerator
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The ambiguity is removed by the off-diagonal
splittings. Bottom line: x m corrections in the poles

and interference phases but dropped in numerator = [NIGErEL el - EHE)



Numerical comparison
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Combined uncertainty

Includes both production mechanism and e-loss vs parton shower
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At high pT there is at least 20% combined uncertainty. Did not increase
much since gluon fragmenatation in H is softer and offsets the difference
between quark-gluon enegry loss. At low PT th eucertainties can grow to
30% D and 50 + % B. Does it further affect collisional interactions?



I|. Differences between

models
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Generally 4 energy loss approaches

The scattering lengths and momentum transfers are largely independent,
providing a 2D parameter space. Such scenario would require expensive
multi-parameter fits to data and has not been explored so far in the
literature.

Assuming local thermal equilibrium, density and temperature can be related
at any space time point. The range of the interaction and parton scattering
cross section can be estimated and depend on the typical coupling between
the jet and the medium g. The scattering length is then obtained form the
QGP density and the scattering cross section

One can relate in thermal field theory all relevant medium parameters to the
temperature T. In spirit, this is similar to the situation described above but in
this case the scattering cross sections and densities are not explicitly
evaluated.



Generally 4 energy loss approaches

* Anapproach to energy loss set in the limit of infinite energies and infinite
number of scatterings assumes that at any scale the transverse momentum
broadening of any scale is given purely by 2D Gaussian random. By discarding
the detailed kinematic information that pertains to parton scattering one can
relate the radiative intensity spectra to the transport parameter ghat

* Indeep inelastic scattering the radiative spectrum can be related to higher
twist matrix elements of field operators. The scattering length can be
thought of as the inter-nucleon distance. The application to the QGP case is
by analogy.

Improvements have been made in e-loss models. Papers have been written how
model A=C, B=D. When it comes to application there are differences

General agreement on the form of the mass correction on the diagonal energy
loss piece

Dokshitzer et al. (2001) Djordjevic et al. (2003)



V. The story of g-hat

"I'm firmly convinced that behind every
great man is a great computer.”




Transverse momentum broadening

of partons

The transport parameter g-hat is discussed in the context of transverse

momentum broadening. Baier et al . (1997)
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Pure random walk approximation

The approximation arises as follows M. Gyulassy et al . (2002)
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medium



Does it really describe parton

broadening

No it doesn’t

Certainly does not capture the tails of the distributions. But also does not work all that
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Uncertainties in quoting g-hat

* Most theoretical energy loss models do not have g-hat as input. The
prescription of how to wither implement it or quote it is a systematic
uncertainty not possible to quantify, at least 100%

* Energy dependence should be removed by either quoting the Gaussian
part or using working prescriptions how to cancel the leading
logarythmic energy dependence. (some models do include energy
dependence, this is not useful as characterization of the medium)

* Q-hat (orany other parameter, T, Debye screening, scattering length,
energy density) depends on the space-time point.




Uncertainties in quoting g-hat

* Ifanaverage is quoted it should be specified, how are the different
space-time points weighted

* Also may depend on the tupe of hydrodynamic medium, gluon
dominated, quark-gluon, how many degrees of freedom
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V.Vovchenko et al . (2002)



V. Non-locality of in-medium

parton splittings / radlatlve
energy loss -




Conclusions

» Uncertainties in heavy flavor tomography. Production mechanism
of heavy flavor, energy loss vs parton showers. At high pT these
are quantifiable uncertainties. ~ 20-30% uncertainty in the
extraction of g-hat. At smaller pT differences can be 50-100%
because of gluon fragmentation

» Uncertainties due to theoretical models. They take different
approximations. When compared at face value they were 400%
different. Even of improvements made —100% difference

= Most models don’t use g-hat. Different prescriptions are used for
different models. This is hard to quantify. 100% uncertainty. The
values of g-hat depend of the space-time point or average, what
average, etc. Are logs of energy eliminated or not. 100%

= Within a specific model realistically one can quote transport
parameters with 20% accuracy (if everything is specified)

= Between models | don see how better than 100% uncertainty can
be achieved. Anything smaller would appear to be “optimistic”
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